史上最详细、最全面的Hadoop环境搭建

前言

这是一篇入门文章,Hadoop的学习方法很多,网上也有很多学习路线图。本文的思路是:以安装部署Apache Hadoop2.x版本为主线,来介绍Hadoop2.x的架构组成、各模块协同工作原理、技术细节。安装不是目的,通过安装认识Hadoop才是目的。

第一部分:Linux环境安装

第一部分介绍Linux环境的安装、配置、Java JDK安装等。

第二部分:Hadoop本地模式安装

Hadoop本地模式只是用于本地开发调试,或者快速安装体验Hadoop,这部分做简单的介绍。

第三部分:Hadoop伪分布式模式安装

伪分布式的意思是虽然各个模块是在各个进程上分开运行的,但是只是运行在一个操作系统上的,并不是真正的分布式。

第四部分:完全分布式安装

完全分布式模式才是生产环境采用的模式,Hadoop运行在服务器集群上,生产环境一般都会做HA,以实现高可用。

第一部分:Linux环境安装

第一步、配置Vmware NAT网络
这里选择NAT模式,各个虚拟机通过NAT使用宿主机的IP来访问外网。
第二步、安装Linux操作系统
操作系统的安装步骤请自行参考公众号前期文章,然后将各机器hosts文件统一。 关闭防火墙: 学习环境可以直接把防火墙关闭掉。用root用户登录后,执行查看防火墙状态。 关闭selinux: selinux是Linux一个子安全机制,学习环境可以将它禁用。

第三步、安装JDK
查看是否已经安装了java JDK。

[root@bigdata-senior01 Desktop]# java –version
注意:Hadoop机器上的JDK,最好是Oracle的Java JDK,不然会有一些问题,比如可能没有JPS命令。 
如果安装了其他版本的JDK,卸载掉。
将jdk-7u67-linux-x64.tar.gz解压到/opt/modules目录下
[root@bigdata-senior01 /]# tar -zxvf jdk-7u67-linux-x64.tar.gz -C /opt/modules
#添加环境变量
设置JDK的环境变量 JAVA_HOME。需要修改配置文件/etc/profile,追加
export JAVA_HOME="/opt/modules/jdk1.7.0_67"
export PATH=$JAVA_HOME/bin:$PATH
#修改完毕后,执行 source /etc/profile
#安装后再次执行 java –version,可以看见已经安装完成。
[root@bigdata-senior01 /]# java -version
java version "1.7.0_67"
Java(TM) SE Runtime Environment (build 1.7.0_67-b01)
Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode)

第二部分:Hadoop本地模式安装

Hadoop部署模式有:本地模式、伪分布模式、完全分布式模式、HA完全分布式模式。区分的依据是NameNode、DataNode、ResourceManager、NodeManager等模块运行在几个JVM进程、几个机器。

模式名称 各个模块占用的JVM进程数 各个模块运行在几个机器数上
本地模式 1个 1个
伪分布式模式 N个 1个
完全分布式模式 N个 N个
HA完全分布式 N个 N个

本地模式部署
本地模式是最简单的模式,所有模块都运行与一个JVM进程中,使用的本地文件系统,而不是HDFS,本地模式主要是用于本地开发过程中的运行调试用。默认的就是本地模式。创建一个存放本地模式hadoop的目录。

[hadoop@bigdata-senior01 modules]$ mkdir /opt/modules/hadoopstandalone
#解压hadoop文件
[hadoop@bigdata-senior01 modules]$ tar -zxf /opt/sofeware/hadoop-2.5.0.tar.gz  -C /opt/modules/hadoopstandalone/
#确保JAVA_HOME环境变量已经配置好
[hadoop@bigdata-senior01 modules]$ echo ${JAVA_HOME}
/opt/modules/jdk1.7.0_67

运行MapReduce程序,验证,我们这里用hadoop自带的wordcount例子来在本地模式下测试跑mapreduce。

#准备mapreduce输入文件wc.input
[hadoop@bigdata-senior01 modules]$ cat /opt/data/wc.input
hadoop mapreduce hive
hbase spark storm
sqoop hadoop hive
spark hadoop
#运行hadoop自带的mapreduce Demo
[hadoop@bigdata-senior01 hadoopstandalone]$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /opt/data/wc.input output2
#这里可以看到job ID中有local字样,说明是运行在本地模式下的。

#查看输出文件,本地模式下,mapreduce的输出是输出到本地。
[hadoop@bigdata-senior01 hadoopstandalone]$ ll output2
total 4
-rw-r--r-- 1 hadoop hadoop 60 Jul  7 12:50 part-r-00000
-rw-r--r-- 1 hadoop hadoop  0 Jul  7 12:50 _SUCCESS
#输出目录中有_SUCCESS文件说明JOB运行成功,part-r-00000是输出结果文件。 

第三部分:Hadoop伪分布式模式安装

伪分布式Hadoop部署过程

Hadoop所用的用户设置
#创建一个名字为hadoop的普通用户
[root@bigdata-senior01 ~]# useradd hadoop
[root@bigdata-senior01 ~]# passwd hadoop
#给hadoop用户sudo权限
[root@bigdata-senior01 ~]# vim /etc/sudoers
#设置权限,学习环境可以将hadoop用户的权限设置的大一些,但是生产环境一定要注意普通用户的权限限制。
root    ALL=(ALL)       ALL
hadoop ALL=(root) NOPASSWD:ALL
#注意:如果root用户无权修改sudoers文件,先手动为root用户添加写权限。
[root@bigdata-senior01 ~]# chmod u+w /etc/sudoers
#切换到hadoop用户
[root@bigdata-senior01 ~]# su - hadoop
[hadoop@bigdata-senior01 ~]$
创建存放hadoop文件的目录
[hadoop@bigdata-senior01 ~]$ sudo mkdir /opt/modules
#将hadoop文件夹的所有者指定为hadoop用户,如果存放hadoop的目录的所有者不是hadoop,之后hadoop运行中可能会有权限问题,那么就讲所有者改为hadoop。
[hadoop@bigdata-senior01 ~]# sudo chown -R hadoop:hadoop /opt/modules
解压Hadoop目录文件
#复制hadoop-2.5.0.tar.gz到/opt/modules目录下。解压hadoop-2.5.0.tar.gz。
[hadoop@bigdata-senior01 ~]# cd /opt/modules
[hadoop@bigdata-senior01 hadoop]# tar -zxvf hadoop-2.5.0.tar.gz
配置Hadoop
#配置Hadoop环境变量
[hadoop@bigdata-senior01 hadoop]# vim /etc/profile
#追加配置:
export HADOOP_HOME="/opt/modules/hadoop-2.5.0"
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
#执行:source /etc/profile 使得配置生效
#验证HADOOP_HOME参数:
[hadoop@bigdata-senior01 /]$ echo $HADOOP_HOME
/opt/modules/hadoop-2.5.0
#配置 hadoop-env.sh、mapred-env.sh、yarn-env.sh文件的JAVA_HOME参数
[hadoop@bigdata-senior01 ~]$ sudo vim  ${HADOOP_HOME}/etc/hadoop/hadoop-env.sh
#修改JAVA_HOME参数为:
export JAVA_HOME="/opt/modules/jdk1.7.0_67"
配置core-site.xml

史上最详细、最全面的Hadoop环境搭建

[hadoop@bigdata-senior01 ~]{HADOOP_HOME}/etc/hadoop/core-site.xml
#(1)fs.defaultFS参数配置的是HDFS的地址。
<property>
<name>fs.defaultFS</name>
<value>hdfs://bigdata-senior01.chybinmy.com:8020</value>
</property>
#(2)hadoop.tmp.dir配置的是Hadoop临时目录,比如HDFS的NameNode数据默认都存放这个目录下,查看*-default.xml等默认配置文件,就可以看到很多依赖${hadoop.tmp.dir}的配置。默认的hadoop.tmp.dir是/tmp/hadoop-${user.name},此时有个问题就是NameNode会将HDFS的元数据存储在这个/tmp目录下,如果操作系统重启了,系统会清空/tmp目录下的东西,导致NameNode元数据丢失,是个非常严重的问题,所有我们应该修改这个路径。
#创建临时目录:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sudo mkdir -p /opt/data/tmp
#将临时目录的所有者修改为hadoop
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sudo chown –R hadoop:hadoop /opt/data/tm
#修改hadoop.tmp.dir
 <property>
   <name>hadoop.tmp.dir</name>
    <value>/opt/data/tmp</value>
  </property>
配置、格式化、启动HDFS
# 配置hdfs-site.xml

史上最详细、最全面的Hadoop环境搭建

[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim ${HADOOP_HOME}/etc/hadoop/hdfs-site.xm
    <property>
       <name>dfs.replication</name>
       <value>1</value>
    </property>
#dfs.replication配置的是HDFS存储时的备份数量,因为这里是伪分布式环境只有一个节点,所以这里设置为1。格式化HDFS。

[hadoop@bigdata-senior01 ~]$ hdfs namenode –format
#格式化是对HDFS这个分布式文件系统中的DataNode进行分块,统计所有分块后的初始元数据的存储在NameNode中。格式化后,查看core-site.xml里hadoop.tmp.dir(本例是/opt/data目录)指定的目录下是否有了dfs目录,如果有,说明格式化成功。注意:格式化时,这里注意hadoop.tmp.dir目录的权限问题,应该hadoop普通用户有读写权限才行,可以将/opt/data的所有者改为hadoop。 
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sudo chown -R hadoop:hadoop /opt/data
#查看NameNode格式化后的目录。
[hadoop@bigdata-senior01 ~]$ ll /opt/data/tmp/dfs/name/current

fsimage是NameNode元数据在内存满了后,持久化保存到的文件。
fsimage*.md5 是校验文件,用于校验fsimage的完整性。
seen_txid 是hadoop的版本
vession文件里保存:
namespaceID:NameNode的唯一ID。
clusterID:集群ID,NameNode和DataNode的集群ID应该一致,表明是一个集群。
#Mon Jul 04 17:25:50 CST 2016
namespaceID=2101579007
clusterID=CID-205277e6-493b-4601-8e33-c09d1d23ece4
cTime=0
storageType=NAME_NODE
blockpoolID=BP-1641019026-127.0.0.1-1467624350057
layoutVersion=-57
启动NameNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /opt/modules/hadoop-2.5.0/logs/hadoop-hadoop-namenode-bigdata-senior01.chybinmy.com.out
启动DataNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/hadoop-daemon.sh start datanode
starting datanode, logging to /opt/modules/hadoop-2.5.0/logs/hadoop-hadoop-datanode-bigdata-senior01.chybinmy.com.out
启动SecondaryNameNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/hadoop-daemon.sh start secondarynamenode
starting secondarynamenode, logging to /opt/modules/hadoop-2.5.0/logs/hadoop-hadoop-secondarynamenode-bigdata-senior01.chybinmy.com.out
JPS命令查看是否已经启动成功,有结果就是启动成功了。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ jps
3034 NameNode
3233 Jps
3193 SecondaryNameNode
3110 DataNode

史上最详细、最全面的Hadoop环境搭建

HDFS上测试创建目录、上传、下载文件
#HDFS上创建目录
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/bin/hdfs dfs -mkdir /demo1
上传本地文件到HDFS上
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/bin/hdfs dfs -put 
${HADOOP_HOME}/etc/hadoop/core-site.xml /demo1
#读取HDFS上的文件内容
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/bin/hdfs dfs -cat /demo1/core-site.xm

#从HDFS上下载文件到本地

[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -get /demo1/core-site.xml

史上最详细、最全面的Hadoop环境搭建

配置、启动YARN
#配置mapred-site.xml,默认没有mapred-site.xml文件,但是有个mapred-site.xml.template配置模板文件。复制模板生成mapred-site.xml。
[hadoop@bigdata-senior01 hadoop-2.5.0]# cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
#添加配置如下:
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
#指定mapreduce运行在yarn框架上。

史上最详细、最全面的Hadoop环境搭建

#配置yarn-site.xml添加配置如下:
<property>
  <name>yarn.nodemanager.aux-services</name>
  <value>mapreduce_shuffle</value>
</property>
<property>
    <name>yarn.resourcemanager.hostname</name>
    <value>bigdata-senior01.chybinmy.com</value>
 </property>
yarn.nodemanager.aux-services配置了yarn的默认混洗方式,选择为mapreduce的默认混洗算法。
yarn.resourcemanager.hostname指定了Resourcemanager运行在哪个节点上。

史上最详细、最全面的Hadoop环境搭建

#启动Resourcemanager
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/yarn-daemon.sh start resourcemanager
#启动nodemanager
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/yarn-daemon.sh start nodemanager
#查看是否启动成功
[hadoop@bigdata-senior01 hadoop-2.5.0]$ jps
3034 NameNode
4439 NodeManager
4197 ResourceManager
4543 Jps
3193 SecondaryNameNode
3110 DataNode

史上最详细、最全面的Hadoop环境搭建

#可以看到ResourceManager、NodeManager已经启动成功了。
YARN的Web页面

YARN的Web客户端端口号是8088,通过http://192.168.100.10:8088/可以查看。

运行MapReduce Job
#创建测试用的Input文件,创建输入目录:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -mkdir -p /wordcountdemo/input
#创建原始文件:在本地/opt/data目录创建一个文件wc.input,内容如下。

#将wc.input文件上传到HDFS的/wordcountdemo/input目录中:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -put /opt/data/wc.input /wordcountdemo/input
#运行WordCount MapReduce Job
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-
2.5.0.jar wordcount /wordcountdemo/input /wordcountdemo/output
#查看输出结果目录
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -ls /wordcountdemo/output
-rw-r--r--   1 hadoop supergroup    0 2016-07-05 05:12 /wordcountdemo/output/_SUCCESS
-rw-r--r--   1 hadoop supergroup   60 2016-07-05 05:12 /wordcountdemo/output/part-r-00000
#output目录中有两个文件,_SUCCESS文件是空文件,有这个文件说明Job执行成功。part-r-00000文件是结果文件,其中-r-说明这个文件是Reduce阶段产生的结果,mapreduce程序执行时,可以没有reduce阶段,但是肯定会有map阶段,如果没有reduce阶段这个地方有是-m-。一个reduce会产生一个part-r-开头的文件。查看输出文件内容。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -cat /wordcountdemo/output/part-r-00000
hadoop  3
hbase   1
hive    2
mapreduce       1
spark   2
sqoop   1
storm   1
#结果是按照键值排好序的。
停止Hadoop
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/hadoop-daemon.sh stop namenode
stopping namenode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/hadoop-daemon.sh stop datanode
stopping datanode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/yarn-daemon.sh stop resourcemanager
stopping resourcemanager
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/yarn-daemon.sh stop nodemanager
stopping nodemanager

Hadoop各个功能模块的理解

1、 HDFS模块

HDFS负责大数据的存储,通过将大文件分块后进行分布式存储方式,突破了服务器硬盘大小的限制,解决了单台机器无法存储大文件的问题,HDFS是个相对独立的模块,可以为YARN提供服务,也可以为HBase等其他模块提供服务。

2、 YARN模块

YARN是一个通用的资源协同和任务调度框架,是为了解决Hadoop1.x中MapReduce里NameNode负载太大和其他问题而创建的一个框架。YARN是个通用框架,不止可以运行MapReduce,还可以运行Spark、Storm等其他计算框架。

3、 MapReduce模块

MapReduce是一个计算框架,它给出了一种数据处理的方式,即通过Map阶段、Reduce阶段来分布式地流式处理数据。它只适用于大数据的离线处理,对实时性要求很高的应用不适用。

开启历史服务

[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/mr-jobhistory-daemon.sh start historyserver

开启后,可以通过Web页面查看历史服务器:
http://bigdata-senior01.chybinmy.com:19888/

Web查看job执行历史
运行一个mapreduce任务
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-
2.5.0.jar wordcount /wordcountdemo/input /wordcountdemo/output1
#job执行中

#查看job历史

历史服务器的Web端口默认是19888,可以查看Web界面。但是在上面所显示的某一个Job任务页面的最下面,Map和Reduce个数的链接上,点击进入Map的详细信息页面,再查看某一个Map或者Reduce的详细日志是看不到的,是因为没有开启日志聚集服务。

开启日志聚集

日志聚集介绍

MapReduce是在各个机器上运行的,在运行过程中产生的日志存在于各个机器上,为了能够统一查看各个机器的运行日志,将日志集中存放在HDFS上,这个过程就是日志聚集。

开启日志聚集
#配置日志聚集功能:Hadoop默认是不启用日志聚集的。在yarn-site.xml文件里配置启用日志聚集。
<property>
    <name>yarn.log-aggregation-enable</name>
    <value>true</value>
 </property>
<property>
    <name>yarn.log-aggregation.retain-seconds</name>
    <value>106800</value>
 </property>
yarn.log-aggregation-enable:是否启用日志聚集功能。
yarn.log-aggregation.retain-seconds:设置日志保留时间,单位是秒。
#将配置文件分发到其他节点:
[hadoop@bigdata-senior01 hadoop]$ scp /opt/modules/hadoop-2.5.0/etc/hadoop/yarn-site.xml bigdata-senior02.chybinmy.com:/opt/modules/hadoop-2.5.0/etc/hadoop/
[hadoop@bigdata-senior01 hadoop]$ scp /opt/modules/hadoop-2.5.0/etc/hadoop/yarn-site.xml bigdata-senior03.chybinmy.com:/opt/modules/hadoop-2.5.0/etc/hadoop/
#重启Yarn进程:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/stop-yarn.sh
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/start-yarn.sh
#重启HistoryServer进程:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/mr-jobhistory-daemon.sh stop historyserver
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/mr-jobhistory-daemon.sh start historyserver
#测试日志聚集,运行一个demo MapReduce,使之产生日志:
bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /input /output1
#查看日志:运行Job后,就可以在历史服务器Web页面查看各个Map和Reduce的日志了。 

第四部分:完全分布式安装

完全布式环境部署Hadoop
完全分部式是真正利用多台Linux主机来进行部署Hadoop,对Linux机器集群进行规划,使得Hadoop各个模块分别部署在不同的多台机器上。

服务器功能规划
bigdata-senior01.chybinmy.com bigdata-senior02.chybinmy.com bigdata-senior03.chybinmy.com
NameNode ResourceManage
DataNode DataNode DataNode
NodeManager NodeManager NodeManager
HistoryServer SecondaryNameNode
在第一台机器上安装新的Hadoop

为了和之前BigData01机器上安装伪分布式Hadoop区分开来,我们将BigData01上的Hadoop服务都停止掉,然后在一个新的目录/opt/modules/app下安装另外一个Hadoop。
我们采用先在第一台机器上解压、配置Hadoop,然后再分发到其他两台机器上的方式来安装集群。

解压Hadoop目录
[hadoop@bigdata-senior01 modules]$ tar -zxf /opt/sofeware/hadoop-2.5.0.tar.gz -C /opt/modules/app/
#配置Hadoop JDK路径修改hadoop-env.sh、mapred-env.sh、yarn-env.sh文件中的JDK路径:
export JAVA_HOME="/opt/modules/jdk1.7.0_67"
配置core-site.xml
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim etc/hadoop/core-site.xml
<configuration>
 <property>
   <name>fs.defaultFS</name>
   <value>hdfs://bigdata-senior01.chybinmy.com:8020</value>
 </property>
 <property>
   <name>hadoop.tmp.dir</name>
   <value>/opt/modules/app/hadoop-2.5.0/data/tmp</value>
 </property>
</configuration>
#fs.defaultFS为NameNode的地址。hadoop.tmp.dir为hadoop临时目录的地址,默认情况下,NameNode和DataNode的数据文件都会存在这个目录下的对应子目录下。应该保证此目录是存在的,如果不存在,先创建。
配置hdfs-site.xml
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim etc/hadoop/hdfs-site.xml
<configuration>
 <property>
   <name>dfs.namenode.secondary.http-address</name>
   <value>bigdata-senior03.chybinmy.com:50090</value>
 </property>
</configuration>
#dfs.namenode.secondary.http-address是指定secondaryNameNode的http访问地址和端口号,因为在规划中,我们将BigData03规划为SecondaryNameNode服务器。所以这里设置为:bigdata-senior03.chybinmy.com:50090
配置slaves
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim etc/hadoop/slaves
bigdata-senior01.chybinmy.com
bigdata-senior02.chybinmy.com
bigdata-senior03.chybinmy.com
#slaves文件是指定HDFS上有哪些DataNode节点。
配置yarn-site.xml
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim etc/hadoop/yarn-site.xml
1
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>bigdata-senior02.chybinmy.com</value>
    </property>
    <property>
        <name>yarn.log-aggregation-enable</name>
        <value>true</value>
    </property>
    <property>
        <name>yarn.log-aggregation.retain-seconds</name>
        <value>106800</value>
    </property>
#根据规划yarn.resourcemanager.hostname这个指定resourcemanager服务器指向bigdata-senior02.chybinmy.com。yarn.log-aggregation-enable是配置是否启用日志聚集功能。yarn.log-aggregation.retain-seconds是配置聚集的日志在HDFS上最多保存多长时间。
配置mapred-site.xml
#从mapred-site.xml.template复制一个mapred-site.xml文件。

[hadoop@bigdata-senior01 hadoop-2.5.0]$ cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
1
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>bigdata-senior01.chybinmy.com:10020</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>bigdata-senior01.chybinmy.com:19888</value>
    </property>
</configuration>
#mapreduce.framework.name设置mapreduce任务运行在yarn上。mapreduce.jobhistory.address是设置mapreduce的历史服务器安装在BigData01机器上。mapreduce.jobhistory.webapp.address是设置历史服务器的web页面地址和端口号。
设置SSH无密码登录

Hadoop集群中的各个机器间会相互地通过SSH访问,每次访问都输入密码是不现实的,所以要配置各个机器间的SSH是无密码登录的。

#在BigData01上生成公钥
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ssh-keygen -t rsa
一路回车,都设置为默认值,然后再当前用户的Home目录下的.ssh目录中会生成公钥文件(id_rsa.pub)和私钥文件(id_rsa)。
#分发公钥
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ssh-copy-id bigdata-senior01.chybinmy.com
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ssh-copy-id bigdata-senior02.chybinmy.com
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ssh-copy-id bigdata-senior03.chybinmy.com
#设置BigData02、BigData03到其他机器的无密钥登录,同样的在BigData02、BigData03上生成公钥和私钥后,将公钥分发到三台机器上。
分发Hadoop文件
#首先在其他两台机器上创建存放Hadoop的目录
[hadoop@bigdata-senior02 ~]$ mkdir /opt/modules/app
[hadoop@bigdata-senior03 ~]$ mkdir /opt/modules/app
#通过Scp分发
Hadoop根目录下的share/doc目录是存放的hadoop的文档,文件相当大,建议在分发之前将这个目录删除掉,可以节省硬盘空间并能提高分发的速度。doc目录大小有1.6G。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ du -sh /opt/modules/app/hadoop-2.5.0/share/doc
1.6G    /opt/modules/app/hadoop-2.5.0/share/doc
[hadoop@bigdata-senior01 hadoop-2.5.0]$ scp -r /opt/modules/app/hadoop-2.5.0/ bigdata-senior02.chybinmy.com:/opt/modules/app
[hadoop@bigdata-senior01 hadoop-2.5.0]$ scp -r /opt/modules/app/hadoop-2.5.0/ bigdata-senior03.chybinmy.com:/opt/modules/app
格式NameNode
#在NameNode机器上执行格式化:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ /opt/modules/app/hadoop-2.5.0/bin/hdfs namenode –format
注意:如果需要重新格式化NameNode,需要先将原来NameNode和DataNode下的文件全部删除,不然会报错,NameNode和DataNode所在目录是在core-site.xml中hadoop.tmp.dir、dfs.namenode.name.dir、dfs.datanode.data.dir属性配置的。
<property>
     <name>hadoop.tmp.dir</name>
     <value>/opt/data/tmp</value>
  </property>
<property>
     <name>dfs.namenode.name.dir</name>
     <value>file://${hadoop.tmp.dir}/dfs/name</value>
  </property>
<property>
     <name>dfs.datanode.data.dir</name>
     <value>file://${hadoop.tmp.dir}/dfs/data</value>
  </property>
#因为每次格式化,默认是创建一个集群ID,并写入NameNode和DataNode的VERSION文件中(VERSION文件所在目录为dfs/name/current 和 dfs/data/current),重新格式化时,默认会生成一个新的集群ID,如果不删除原来的目录,会导致namenode中的VERSION文件中是新的集群ID,而DataNode中是旧的集群ID,不一致时会报错。另一种方法是格式化时指定集群ID参数,指定为旧的集群ID。
启动集群
#启动HDFS
[hadoop@bigdata-senior01 hadoop-2.5.0]$ /opt/modules/app/hadoop-2.5.0/sbin/start-dfs.sh

#启动YARN
[hadoop@bigdata-senior01 hadoop-2.5.0]$ /opt/modules/app/hadoop-2.5.0/sbin/start-yarn.sh
#在BigData02上启动ResourceManager:
[hadoop@bigdata-senior02 hadoop-2.5.0]$ sbin/yarn-daemon.sh start resourcemanager
#启动日志服务器
因为我们规划的是在BigData03服务器上运行MapReduce日志服务,所以要在BigData03上启动。
[hadoop@bigdata-senior03 ~]$ /opt/modules/app/hadoop-2.5.0/sbin/mr-jobhistory-daemon.sh start historyserver
starting historyserver, logging to /opt/modules/app/hadoop-2.5.0/logs/mapred-hadoop-historyserver-bigda       ta-senior03.chybinmy.com.out
[hadoop@bigdata-senior03 ~]$ jps
3570 Jps
3537 JobHistoryServer
3310 SecondaryNameNode
3213 DataNode
3392 NodeManager
#查看HDFS Web页面
http://bigdata-senior01.chybinmy.com:50070/
#查看YARN Web 页面
http://bigdata-senior02.chybinmy.com:8088/cluster
测试Job

我们这里用hadoop自带的wordcount例子来在本地模式下测试跑mapreduce。

#准备mapreduce输入文件wc.input
[hadoop@bigdata-senior01 modules]$ cat /opt/data/wc.input
hadoop mapreduce hive
hbase spark storm
sqoop hadoop hive
spark hadoop
#在HDFS创建输入目录input
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -mkdir /input
#将wc.input上传到HDFS
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -put /opt/data/wc.input /input/wc.input
# 运行hadoop自带的mapreduce Demo
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /input/wc.input /output
#查看输出文件
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -ls /output
Found 2 items
-rw-r--r--   3 hadoop supergroup          0 2016-07-14 16:36 /output/_SUCCESS
-rw-r--r--   3 hadoop supergroup         60 2016-07-14 16:36 /output/part-r-00000